This is a Demo Server. Data inside this system is only for test purpose.
 

Development of whey protein isolate based nanocomposite food packaging film incorporated with chitosan and zein nanoparticles

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

The purpose of this study was to investigate the effect of chitosan and zein nanoparticles addition on the barrier and mechanical properties of whey protein isolate (WPI) films as an alternative to conventional synthetic packaging materials. Chitosan nanoparticles (CSNP) were produced via ionic gelation method using sodium tripolyphosphate (TPP) and deacetylated chitosan. Zein nanoparticles (ZNP) were synthesized based on antisolvent procedure in the presence of sodium caseinate (SC) to enable dispersion in water. Both plain and nanoparticle added WPI films were prepared by solution casting method. Water vapor barrier and mechanical properties of films were measured and the improvements in these properties with nanoparticle addition was further investigated through surface wetting, morphological, viscoelastic and thermal properties of the films. Both nanoparticles significantly decreased the water vapor permeability (WVP) and improved the mechanical properties of the WPI film. The highest enhancement in barrier and mechanical properties of the WPI films were recorded with 20% (w/w of WPI) CSNP and 120% (w/w of WPI) ZNP addition which corresponded to the maximum nanoparticle loading levels. At these loadings, the average WVP of pure WPI films loaded with ZNP and CSNP decreased by 84% and 57%, and the average tensile strength increased by 304% and 161%, respectively. On the other hand, the nanoparticles did not change the elongation at break significantly. ZNP was found more effective than CSNP in improving barrier and mechanical properties of the WPI films due to its hydrophobic nature and better dispersion in the protein matrix which allowed much higher loadings compared with the maximum loading levels achieved with CSNP. CSNP addition imparted antibacterial activity to the WPI films.

Description

Thesis (Master)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2014
Includes bibliographical references (leaves: 61-68)
Text in English; Abstract: Turkish and English
xi, 68 leaves

Keywords

Food packaging, Nanoparticles, Nanocomposites, Chitosan, Zein, Sodyum caseinate, Physical properties, Mechanical properties, Chemical Engineering, Kimya Mühendisliği, Morphological properties, Sodium caseinate, Whey, Food Engineering, Microbiological properties, Gıda Mühendisliği

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections