This is a Demo Server. Data inside this system is only for test purpose.
 

Development of layered silicate/epoxy nanocomposite

No Thumbnail Available

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology
Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Layered silicate/polymer nanocomposites are materials that display rather unique properties, even at low silicate content, by comparison with more conventional particulate-filled polymers. These nanocomposites exhibit improved mechanical, thermal, optical, gas permeability resistance and fire retardancy properties when compared with the pure polymer.In this study, layered silicate/polymer nanocomposites were prepared using Na+ cation containing montmorillonite (MMT) and epoxy resins. Silicate particles were treated with hexadecyltrimethylammonium chloride (HTAC) to obtain the complete homogenous dispersion of the nano plaques within the polymer matrix which forms the exfoliated microstructure. In this way, organophilic silicates (OMMT) were obtained.Modification of the silicate expands the silicate galleries (from 14 to 18 )that promote the formation of exfoliated composite structure. SEM results showed that nanocomposites with organically modified MMT exhibited better dispersion than those with MMT. It was found that the tensile and flexural modulus values are increased, whereas the fracture toughness is decreased with increasing silicate content. Thermal analysis results revealed that the glass transition temperature(Tg) of the neat epoxy resin (63.6oC) increases to 68.9 oC for the nanocomposites with 3 wt. % of OMMT. By incorporation of silicate particles, the dynamic mechanical properties of epoxy; including the storage and loss modulus and Tg are increased. Optical transmission values of the epoxy were affected by MMT and OMMT silicate incorporation. It was found that flame resistance at the polymer improved by the incorporation of MMT particles to the neat epoxy.

Description

Thesis (Master)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2006
Includes bibliographical references (leaves 93-98)
Text in English; Abstract: Turkish and English
xv, 98 leaves

Keywords

Engineering Sciences, Mühendislik Bilimleri

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals