This is a Demo Server. Data inside this system is only for test purpose.
 

Q-periodicity, self-similarity and weierstrass-mandelbrot function

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

In the present thesis we study self-similar objects by method's of the q-calculus. This calculus is based on q-rescaled finite differences and introduces the q-numbers, the qderivative and the q-integral. Main object of consideration is the Weierstrass-Mandelbrot functions, continuous but nowhere differentiable functions. We consider these functions in connection with the q-periodic functions. We show that any q-periodic function is connected with standard periodic functions by the logarithmic scale, so that q-periodicity becomes the standard periodicity. We introduce self-similarity in terms of homogeneous functions and study properties of these functions with some applications. Then we introduce the dimension of self-similar objects as fractals in terms of scaling transformation. We show that q-calculus is proper mathematical tools to study the self-similarity. By using asymptotic formulas and expansions we apply our method to Weierstrass-Mandelbrot function, convergency of this function and relation with chirp decomposition.

Description

Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2012
Includes bibliographical references (leaves: 92-94)
Text in English; Abstract: Turkish and English
viii, 98 leaves

Keywords

Chirp signals, Matematik, Fourier transformation, Fractal dimension, Fractal, Fourier series, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.