Synthesis and characterization of MgB2 superconducting wires
No Thumbnail Available
Date
2008
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Izmir Institute of Technology
Open Access Color
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, the superconducting properties of laboratory synthesized MgB2 was investigated. In the first part, MgB2 synthesis using commercial magnesium and boron (95-97% purity), and its microstructural and electrical characterization was investigated.Effects of sheath material and annealing temperatures were also examined. The microstructural studies showed that when Cu tubes were used as sheath material, MgCu2 forms instead of MgB2 even at 700oC, while on Fe clad cores, the major phase was MgB2 with minor MgO constituent. The transition temperatures of Fe clad wires were measured between 39K and 40K, whereas no transition temperature was observed for Cu clad wires. The Ic value of the Fe clad MgB2 wire was about 25 A at 4K, while the copper clad wire could not carry current and formed resistance. In Fe clad wires, better results were obtained at annealing temperature of 800°C for 30 minutes. In the second part, MgB2 synthesis using commercial magnesium and boron (90% purity) was tried. 0-5-10-15 wt% of Mg doping and, additionally annealing temperatures were examined. Powder-In-Tube method was used for wire production. 10 wt% Mg addition was seen to be beneficial as compared to the stoichiometric MgB2. 750°C was found to be the most suitable temperature for the formation of MgB2 phase. The Ic value of the wire was measured as 13 A at 4K and it showed a broader transition with non-zero resistivity, transition temperature of 24K.In the third part, 200 m long four filament MgB2/Cu wire was successfully produced in laboratory conditions.
Description
Thesis (Master)--İzmir Institute of Technology, Chemistry, İzmir, 2008
Includes bibliographical references (leaves: 68-78)
Text in English; Abstract: Turkish and English
xi, 78 leaves
Includes bibliographical references (leaves: 68-78)
Text in English; Abstract: Turkish and English
xi, 78 leaves
ORCID
Keywords
Chemistry, Magnesium boride, Superconductors, Kimya, Boron, QC611.92 H82 2008