This is a Demo Server. Data inside this system is only for test purpose.
 

Foaming of waste glass of a glass polishing factory

Loading...
Publication Logo

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Journal Issue

Abstract

The foaming behavior of a glass powder, a residue from a window glass polishing factory in Bursa, was investigated at the temperatures between 700-950°C. As-received glass powder composition, 72.76% SiO2, 11.18% Na2O, 11.31% CaO, 1.74% MgO and 1.61% Al2O3, was well matched with that of soda lime window glass. The expansion of the glass powder compacts started at a characteristic temperature of 690-700 °C and reached a maximum volumetric expansion values at about 866-877 °C. The maximum volume expansion and foam density varied between 700-772% and 0.378-0.206 g/cm3, respectively. The foaming of the compact at 750 °C yielded only crystalline phase of quartz, as the foaming temperature increased over 750 °C, wollastonite and diopsite crystals formed The compressive strength of the foams ranged between 1.9 and 4 MPa and the thermal conductivity between 0.048-0.079 W/K m. Both collapse and plateau stresses increased with increasing relative density, while heating rate was found to be not affect the collapse and plateau stresses. The foamed glass samples showed the mechanical behavior similar to open cell foams. This was attributed to the thicker cell edges and thinner cell walls leading to higher glass material accumulation on the cell edges. The self-foaming behavior of the studied waste glass powder was attributed to the organic compounds within the boron oil which was used as a coolant in the polishing operations.

Description

Thesis (Master)--Izmir Institute of Technology, Materials Science and Engineering, Izmir, 2012
Includes bibliographical references (leaves: 66-69)
Text in English; Abstract: Turkish and English
xi, 69 leaves
Full text release delayed at author's request until 2015.07.23

Keywords

Metalurji Mühendisliği, Metallurgical Engineering

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.