This is a Demo Server. Data inside this system is only for test purpose.
 

Vehicle type classification with deep learning

No Thumbnail Available

Date

2020-06

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

In this thesis, we studied the vehicle type classification problem from several perspectives. We apply a deep learning technique with different parameters such as image size and the number of images in data sets to the classification of an image as one of the nine vehicle types. After choosing the most appropriate one among trained models, we convert the problem into a hierarchical tree classification problem so that it could be analyzed in three different tree hierarchies. Experiments are performed using three computational methods for calculating possibilities for each of the nine classes that correspond to the leaves of the hierarchical trees. These studies result in a conclusion that 0.762812 average accuracy is obtained when traditional arithmetic mean computation applied on the hierarchical tree with level-2 using the Stanford Dataset by 224 image size on ResNet34 architecture.
Bu tez çalışmasında, taşıt tipi sınıflandırma problemi farklı açılardan incelenmiştir. Bir imgeyi dokuz araç türünden biri olarak sınıflandırmak için imge boyutu, veri kümelerindeki örnek sayısı gibi farklı parametreleri kullanan bir derin öğrenme tekniği uygulanmıştır. Eğitimli modeller arasında en uygun olanını seçtikten sonra, sorunu hiyerarşik bir ağaç sınıflandırma problemine dönüştürerek üç farklı ağaç hiyerarşisinde analiz ettik. Deneyler, hiyerarşik ağaçların yapraklarına karşılık gelen dokuz sınıfın her biri için olasılıkları hesaplamak için üç hesaplama yöntemi kullanılarak gerçekleştirilmiştir. Bu çalışmalar, ResNet34 mimarisinde 224 görüntü boyutuna göre Stanford veri seti kullanılarak seviye-2 ile hiyerarşik ağaçta geleneksel aritmetik ortalama hesaplama uygulandığında 0.762812 ortalama doğruluğunun elde edildiği sonucuna varmaktadır.

Description

Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2020
Includes bibliographical references (leaves: 50-52)
Text in English; Abstract: Turkish and English

Keywords

Deep learning, Vehicle type classification, Convolutional Neural Network

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals