This is a Demo Server. Data inside this system is only for test purpose.
 

Sintering, co-sintering and microstructure control of oxide based materials: Zirconia, alumina, spinel, alumina-zirconia and spinel-alumina

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Densification and microstructural evolution during co-sintering of alumina (Al2O3) . zirconia (Y-ZrO2) and alumina . spinel (MgAl2O4) co-pressed bimaterials were investigated. First high purity submicron powders of monomaterials of alumina, spinel and zirconia were pressed at 100 to 250 MPa with different dry pressing techniques like UP (uniaxial pressing) and CIP (cold isostatic pressing). The latter was found to provide higher green densities. Before co-sintering of bi-materials, sintering behaviors of their end-members were studied by vertical dilatometer to determine the degree of shrinkage mismatches between the end-members. The effects of precoarsening and two-step sintering on the densification and microstructure of spinel ceramics were tested. Samples were etched both chemically and thermally to better understand their structure. Crack-free bonds were observed in alumina-spinel bi-materials after compaction by UP+CIP. Interfaces between alumina and spinel after treatment at 1400-1500 C were investigated by SEM, EDS, WDS, EBSD. A spinel interlayer with columnar grains of up to 40 .m length and 5 .m width was observed after 16 hours at 1500 C. Growth rate of this interlayer from spinel toward alumina was found to follow parabolic kinetics, controlled by a diffusion mechanism of probably lattice diffusion of O2- ions. Two isothermal steps co-sintering at 1400 C and 1500 C on the interlayer formation was tested. Two separate areas formed in the interlayer spinel. Diffusion couple tests of spinel and alumina produced the same columnar spinel grains at the interface with the same kinetics as in co-sintering experiments. Phase boundaries between the columnar spinel and alumina grains had a characteristic center of curvature located in alumina which was further indication of the direction of growth of the interlayer.

Description

Thesis (Doctoral)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010
Includes bibliographical references (leaves: 148-157)
Text in English; Abstract: Turkish and English
xxi, 157 leaves

Keywords

Mechanical Engineering, Makine Mühendisliği, Material science

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections