This is a Demo Server. Data inside this system is only for test purpose.
 

Development of functional composite edible packaging materials for controlled release of bioactive substances

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

The aim of this study was to control the release of bioactive agents by modification of hydrophobicity and morphology of zein films using composite and blend film making methods. The bioactive agents incorporated into zein based films were lysozyme and phenolic compounds. The incorporation of beeswax, carnauba or candelilla wax into films gave composite films containing amorphous wax particles, while the incorporation of oleic, lauric or linoleic acid into films caused formation of blend films containing many spherical zein capsules within their matrix. The release profiles of phenolic compounds from zein films were successfully altered by the development of composite and blend films. The composites and blends can show 2.5 to 17 fold lower lysozyme release rates than the controls. The lysozyme release rates of composites reduced as the melting point of waxes increased. The chain length and the concentration of fatty acid used in blend films could also have affected the release rates of lysozyme. The phenolic antioxidants, catechin, gallic acid, p-hydroxy benzoic acid and ferulic acid are effective plasticizers of zein films. These phenolic compounds eliminate the classical brittleness problem of zein films and increase their flexibility considerably (up to 196%). Furthermore, catechin contributed to controlled release properties of films by reducing the film porosity. The phenolic compounds also provided antioxidant activity to films (up to 86 μmol Trolox/cm2). The blends and composites of zein films containing phenolic compounds or lysozyme and phenolic compounds showed antimicrobial activity on critical food pathogenic bacteria or indicator microorganisms including Escherchia coli O157:H7, Listeria monocytogenes, Listeria innocua and Campylobacter jejuni. This work showed the possibility of obtaining advanced edible films having flexibility, antimicrobial and antioxidant activity and controlled release properties.

Description

Thesis (Doctoral)--Izmir Institute of Technology, Food Engineering, Izmir, 2013
Includes bibliographical references (leaves: 113-135)
Text in English; Abstract: Turkish and English
xvii, 144 leaves
Full text release delayed at author's request until 2015.06.19

Keywords

Food packaging, Packaging, Food Engineering, Gıda Mühendisliği

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals