This is a Demo Server. Data inside this system is only for test purpose.
 

Vortex dynamics in domains whith boundaries

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

In this thesis we consider the following problems: 1) The problem of fluid advection excited by point vortices in the presence of stationary cylinders (we also add a uniform flow to the systems). 2) The problem of motion of one vortex (or vortices) around cylinder(s). We also investigate integrable and chaotic cases of motion of two vortices around an oscillating cylinder in the presence of a uniform flow. In the fluid advection problems Milne-Thomson's Circle theorem and an analyticalnumerical solution in the form of an infinite power series are used to determine flow fields and the forces on the cylinder(s) are calculated by the Blasius theorem. In the "two vortices-one cylinder" case we generalize the problem by adding independent circulation k0 around the cylinder itself. We then write the conditions for force to be zero on the cylinder. The Hamiltonian for motion of two vortices in the case with no uniform flow and stationary cylinder is constructed and reduced. Also constant Hamiltonian (energy) curves are plotted when the system is shown to be integrable according to Liouville's definition. By adding uniform flow to the system and by allowing the cylinder to vibrate, we model the natural vibration of the cylinder in the flow field, which has applications in ocean engineering involving tethers or pipelines in a flow field. We conclude that in the chaotic case, forces on the cylinder may be considerably larger than those on the integrable case depending on the initial positions of the vortices, and that complex phenomena such as chaotic capture and escape occur when the initial positions lie in a certain region.

Description

Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2011
Includes bibliographical references (leaves: 70-72)
Text in English; Abstract: Turkish and English
x, 72 leaves

Keywords

Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.