This is a Demo Server. Data inside this system is only for test purpose.
 

Homological objects of proper classes generated by simple modules

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

The main purpose of this thesis is to study some classes of modules determined by neat, coneat and s-pure submodules. A right R-module M is called neat-flat (resp. coneat-flat) if the kernel of any epimorphism Y → M → 0 is neat (resp. coneat) in Y. A right R-module M is said to be absolutely s-pure if it is s-pure in every extension of it. If R is a commutative Noetherian ring, then R is C-ring if and only if coneat-flat modules are flat. A commutative ring R is perfect if and only if coneat-flat modules are projective. R is a right Σ -CS ring if and only if neat-flat right R-modules are projective. R is a right Kasch ring if and only if injective right R-modules are neat-flat if and only if the injective hull of every simple right R-module is neat-flat. If R is a right N-ring, then R is right Σ -CS ring if and only if pure-injective neat-flat right R-modules are projective if and only if absolutely s-pure left R-modules are injective and R is right perfect. A domain R is Dedekind if and only if absolutely s-pure modules are injective. It is proven that, for a commutative Noetherian ring R, (1) neat-flat modules are flat if and only if absolutely s-pure modules are absolutely pure if and only if R A × B, wherein A is QF-ring and B is hereditary; (2) neat-flat modules are absolutely s-pure if and only if absolutely s-pure modules are neat-flat if and only if R A × B, wherein A is QF-ring and B is Artinian with J2(B) = 0.

Description

Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2014
Includes bibliographical references (leaves: 67-72)
Text in English; Abstract: Turkish an English
ix, 72 leaves

Keywords

General module theory, Associative rings, Homological algebra, Proper classes, Injective modules, Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections