This is a Demo Server. Data inside this system is only for test purpose.
 

Automatic identification of abnormal regiones in digitized histology cross-sections of colonic tissues and adenocarcinomas using quasi-supervised learning

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Izmir Institute of Technology

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No

Research Projects

Organizational Units

Journal Issue

Abstract

In this thesis, a framework for quasi-supervised histopathology image texture identi- cation is presented. The process begins with extraction of texture features followed by a quasi-supervised analysis. Throughout this study, light microscopic images of the hematoxylin and eosin stained colorectal histopathology sections containing adenocarcinoma were quantitatively analysed. The quasi-supervised learning algorithm operates on two datasets, one containing samples of normal tissues labelled only indirectly and in bulk, and the other containing an unlabelled collection of samples of both normal and cancer tissues. As such, the algorithm eliminates the need for manually labelled samples of normal and cancer tissues commonly used for conventional supervised learning and signicantly reduces the expert intervention. Several texture feature vector datasets corresponding to various feature calculation parameters were tested within the proposed framework. The resulting labelling and recognition performances were compared to that of a conventional powerful supervised classier using manually labelled ground-truth data that was withheld from the quasi-supervised learning algorithm. That supervised classier represented an idealized but undesired method due to extensive expert labelling. Several vector dimensionality reduction techniques were evaluated an improvement in the performance. Among the alternatives, the Independent Component Analysis procedure increased the performance of the proposed framework. Experimental results on colorectal histopathology slides showed that the regions containing cancer tissue can be identied accurately without using manually labelled ground-truth datasets in a quasi-supervised strategy.

Description

Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2012
Includes bibliographical references (leaves: 140-147)
Text in English; Abstract: Turkish and English
xiv, 147 leaves

Keywords

Texture analysis, Elektrik ve Elektronik Mühendisliği, Colonic neoplasms, Carcinoma, Automatic identification, Electrical and Electronics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

Collections