PudMed
Permanent URI for this collectionhttp://65.108.157.135:4000/handle/123456789/13
Browse
Browsing PudMed by Scopus Q "Q3"
Now showing 1 - 20 of 25
- Results Per Page
- Sort Options
Article Citation - WoS: 8An answer to colon cancer treatment by mesenchymal stem cell originated from adipose tissue(Mashhad Univ Med Sciences, 2018) Iplik, Elif Sinem; Ertugrul, Baris; Kozanoglu, Ilknur; Baran, Yusuf; Cakmakoglu, Bedia; Baran, YusufObjective(s): Colon cancer is risen up with its complex mechanism that directly impacts on its treatment as well as its common prevalence. Mesenchymal stem cells (MSCs) have been considered as a therapeutic candidate for conventional disease including cancer. In this research, we have focused on apoptotic effects of adipose tissue-derived MSCs in colon cancer. Materials and Methods: MSCs were obtained from adipose tissue and characterized by Flowcytometer using suitable antibodies. MSCs, HT-29, HCT-116, RKO and healthy cell line MRC5 were cultured by different seeding procedure. After cell viability assay, changes in caspase 3 enzyme activity and the level of phosphatidylserine were measured. Results: For cell viability assay, a 48 hr incubation period was chosen to seed all cells together. There was a 1.36-fold decrease in caspase 3 enzyme activity by co-treatment of RKO and MSCs in addition to 2.02-fold decrease in HT-29 and MSCs co-treatment, and 1.103-fold increase in HCT-116 and MSCs. The results demonstrated that HCT-116 led to the highest rate of apoptotic cell death (7.5%) compared with other cells. Conclusion: We suggest that MSCs might remain a new treatment option for cancer by its differentiation and repair capacity.Review Citation - WoS: 11Bisphosphonate treatment and radiotherapy in metastatic breast cancer(Humana Press inc, 2008) Ural, A. Ugur; Avcu, Ferit; Baran, Yusuf; Baran, YusufPatients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and high risk of pathologic fractures due to osteolysis. The treatment of breast cancer patients with bone metastases requires a multidisciplinary approach. Radiotherapy is an established treatment for metastatic bone pain. It may be delivered either as a localized low dose treatment for localized bone pain or systemically for more widespread symptoms. Bisphosphonates have been shown to reduce morbidity and bone pain from bone metastases when given to patients with metastatic bone disease. In vivo studies indicate that early bisphosphonates administration in combination with radiotherapy improves remineralization and restabilization of osteolytic bone metastases in animal tumor models. This review focused on a brief discussion about biology of bone metastases, the effects of radiotherapy and bisphosphonate therapy, and possible mechanisms of combination therapy in metastatic breast cancer patients.Review Citation - WoS: 350Cell Proliferation and Cytotoxicity Assays(Bentham Science Publ Ltd, 2016) Adan, Aysun; Kiraz, Yagmur; Baran, Yusuf; Baran, YusufCell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms in action of certain genes, proteins and pathways involved cell survival or death after exposing to toxic agents. Generally, methods used to determine viability are also common for the detection of cell proliferation. Cell cytotoxicity and proliferation assays are generally used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. Regardless of the type of cell-based assay being used, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be basically classified into different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) raman micro-spectroscopy. In order to choose the optimal viability assay, the cell type, applied culture conditions, and the specific questions being asked should be considered in detail. This particular review aims to provide an overview of common cell proliferation and cytotoxicity assays together with their own advantages and disadvantages, their methodologies, comparisons and intended purposes.Article Citation - WoS: 6Docetaxel enhances the cytotoxic effects of imatinib on Philadelphia positive human chronic myeloid leukemia cells(Taylor & Francis Ltd, 2009) Gucluler, Gozde; Baran, Yusuf; Baran, YusufChronic myelogenous leukemia (CML) results from a translocation between chromosomes 9 and 22 which generates BCR/ABL fusion protein and characterized by uncontrolled proliferation of immature white blood cells. Imatinib, a molecularly targeting anticancer agent, is used widely for the treatment of CML and showed significant activity in chronic and accelerated phases but much less in blast crisis phase. The resistance to imatinib especially in blast crisis phase is recognized as a major problem in the treatment of CML patients. Docetaxel is shown to arrest cells in G2/M phase of the cell cycle which makes cells more sensitive to chemo- and radiotherapy. In this study, we aimed to increase chemosensitivity of human K562 CML cells to imatinib in combination with docetaxel. Taken together, our results showed that the combination of imatinib and docetaxel decreased cellular proliferation and increased apoptosis in human K562 chronic myeloid leukemia cells as compared to any agent alone. Imatinib and docetaxel induced apoptosis through caspase-3 enzyme activity and mitochondrial membrane potential.Article Citation - WoS: 12Gossypol Interferes with Both Type I and Type II Topoisomerase Activities Without Generating Strand Breaks(Humana Press inc, 2013) Senarisoy, Muge; Canturk, Pakize; Zencir, Sevil; Baran, Yusuf; Topcu, Zeki; Baran, YusufA considerable number of agents with chemotherapeutic potentials reported over the past years were shown to interfere with the reactions of DNA topoisomerases, the essential enzymes that regulate conformational changes in DNA topology. Gossypol, a naturally occurring bioactive phytochemical is a chemopreventive agent against various types of cancer cell growth with a reported activity on mammalian topoisomerase II. The compounds targeting topoisomerases vary in their mode of action; class I compounds act by stabilizing covalent topoisomerase-DNA complexes resulting in DNA strand breaks while class II compounds interfere with the catalytic function of topoisomerases without generating strand breaks. In this study, we report Gossypol as the interfering agent with type I topoisomerases as well. We also carried out an extensive set of assays to analyze the type of interference manifested by Gossypol on DNA topoisomerases. Our results strongly suggest that Gossypol is a potential class II inhibitor as it blocked DNA topoisomerase reactions with no consequently formed strand breaks.Article Citation - WoS: 33Imatinib induces autophagy through BECLIN-1 and ATG5 genes in chronic myeloid leukemia cells(Taylor & Francis Ltd, 2011) Can, Geylani; Ekiz, Huseyin Atakan; Baran, Yusuf; Baran, YusufImatinib is a chemotherapeutic drug used for the treatment of chronic myeloid leukemia (CML). Recent data showed imatinib-induced cell death in various types of cancers. Autophagy is the physiological process in which cellular components are broken down by the lysosomal activation. In this study, we aimed to examine the effects of imatinib on autophagy in addition to apoptosis in CML cells. Results suggested that imatinib induces autophagy in CML cells through inducing over-expression of BECLIN-1 and ATG5 genes with the statistical significance. Our results demonstrated that autophagy might be involved in imatinib-induced cell death.Article Citation - WoS: 0Investigating the potential therapeutic role of targeting STAT3 for overcoming drug resistance by regulating energy metabolism in chronic myeloid leukemia cells(Mashhad Univ Med Sciences, 2022) Kaymaz, Burcin Tezcanli; Gunel, Nur Selvi; Sogutlu, Fatma; Ay, Neslihan Pinar Ozates; Baran, Yusuf; Gunduz, Cumhur; Avci, Cigir Biray; Baran, YusufObjective(s): STATs are one of the initial targets of emerging anti-cancer agents due to their regulatory roles in survival, apoptosis, drug response, and cellular metabolism in CML. Aberrant STAT3 activity promotes malignancy, and acts as a metabolic switcher in cancer cell metabolism, contributing to resistance to TKI nilotinib. To investigate the possible therapeutic effects of targeting STAT3 to overcome nilotinib resistance by evaluating various cellular responses in both sensitive and nilotinib resistant CML cells and to test the hypothesis that energy metabolism modulation could be a mechanism for re-sensitization to nilotinib in resistant cells. Materials and Methods: By using RNAi-mediated STAT3 gene silencing, cell viability and proliferation assays, apoptotic analysis, expressional regulations of STAT mRNA transcripts, STAT3 total, pTyr705, pSer727 protein expression levels, and metabolic activity as energy metabolism was determined in CML model K562 cells, in vitro. Results: Targeting STAT3 sensitized both parental and especially nilotinib resistant cells by decreasing leukemic cell survival; inducing leukemic cell apoptosis, and decreasing STAT3 mRNA and protein expression levels. Besides, cell energy phenotype was modulated by switching energy metabolism from aerobic glycolysis to mitochondrial respiration in resistant cells. RNAi-mediated STAT3 silencing accelerated the sensitization of leukemia cells to nilotinib treatment, and STAT3-dependent energy metabolism regulation could be another underlying mechanism for regaining nilotinib response. Conclusion: Targeting STAT3 is an efficient strategy for improving the development of novel CML therapeutics for regaining nilotinib response, and re-sensitization of resistant cells could be mediated by induced apoptosis and regulation in energy metabolism.Review Citation - WoS: 8Citation - Scopus: 8Long Noncoding RNAs in Human Cancer and Apoptosis(Bentham Science Publ Ltd, 2023) Erdogan, Ipek; Sweef, Osama; Akgul, Bunyamin; Akgül, BünyaminGenome annotations have uncovered the production of at least one transcript from nearly all loci in the genome at some given time throughout the development. Surprisingly, many of these transcripts do not code for proteins and are relatively long in size, thus called long noncoding RNAs (lncRNAs). Next- and third-generation sequencing technologies have amassed numerous lncRNAs expressed under different phenotypic conditions, yet many remain to be functionally characterized. LncRNAs regulate gene expression by functioning as scaffold, decoy, signaling, and guide molecules both at the transcriptional and post-transcriptional levels, interacting with different types of macromolecules, such as proteins, DNA, and RNA. Here, we review the potential regulatory role of lncRNAs in apoptosis and cancer as some of these lncRNAs may have the diagnostic and therapeutic potential in cancer.Article Citation - WoS: 12Macromolecular Changes in Nilotinib Resistant K562 Cells; an In vitro Study by Fourier Transform Infrared Spectroscopy(Sage Publications inc, 2012) Ceylan, Cagatay; Camgoz, Aylin; Baran, Yusuf; Baran, YusufNilotinib is a second generation tyrosine kinase inhibitor which is used in both first and second line treatment of chronic myeloid leukemia (CML). In the present work, the effects of nilotinib resistance on K562 cells were investigated at the molecular level using Fourier transform infrared (FT-IR) spectroscopy. Human K562 CML cells were exposed to step-wise increasing concentrations of nilotinib, and sub-clones of K562 cells resistant to 50 nM nilotinib were generated and referred to as K562/NIL-50 cells. Antiproliferative effects of nilotinib were determined by XTT cell proliferation assay. Changes in macromolecules in parental and resistant cells were studied by FT-IR spectroscopy. Nilotinib resistance caused significant changes which indicated increases in the level of glycogen and membrane/lipid order. The amount of unsaturated lipids increased in the nilotinib resistant cells indicating lipid peroxidation. The total amount of lipids did not change significantly but the relative proportion of cholesterol and triglycerides altered considerably. Moreover, the transcriptional status decreased but metabolic turn-over increased as revealed by the FT-IR spectra. In addition, changes in the proteome and structural changes in both proteins and the nucleus were observed in the K562/NIL-50 cells. Protein secondary structural analyses revealed that alpha helix structure and random coil structure decreased, however, anti-parallel beta sheet structure, beta sheet structure and turns structure increased. These results indicate that the FT-IR technique provides a method for analyzing drug resistance related structural changes in leukemia and other cancer types.Article Citation - WoS: 37Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells(Taylor & Francis Ltd, 2007) Baran, Yusuf; Ural, Ali Ugur; Gunduz, Ufuk; Baran, YusufA major advancement in the treatment of chronic myeloid leukemia (CML) has been the development of imatinib, which has shown striking activity in the chronic phase and the accelerated phase, but less so in the blast phase of the disease. Despite high rates of hematologic and cytogenetic responses to therapy, the emergence of resistance to imatinib has been recognized as a major problem in the treatment of patients with CML. Various cellular mechanisms may be involved in the nature of cellular resistance. Increased amount of target, alteration in structure of target proteins, decreased drug uptake and increased detoxification are well-known mechanisms of resistance. On the other hand, in some cases, even if anticancer drugs reach their sites of action, bypassing drug efflux system of the cells, some cells still may survive via the dysregulation of apoptotic signalling. In this study, mechanisms of resistance to imatinib-induced apoptosis in human Meg-01 CML cells were examined. Continuous exposure of cells to step-wise increasing concentrations of imatinib resulted in the selection of 200- and 1000 nM imatinib-resistant sub-lines referred to as Meg-01/IMA-0,2 and Meg-01/1MA-1, respectively. MTT cell proliferation, cell cycle analyses and trypan blue dye exclusion analyses showed that Meg-0l/IMA-1 cells were resistant to imatinib-induced apoptosis as compared to parental sensitive cells. There was an increased expression of BCR/ABL, Bcl-2 and an increase in mitochondrial membrane potential (MMP) detected in resistant cells comparing to parental sensitive cells. There was no mutation detected in imatinib binding site of ABL kinase region. Various diverse mechanisms have been reported for their involvement in the multidrug resistance. In this study, it has been shown that the degree of BCR/ABL expression appears to be directly proportional to the levels of imatinib resistance. In addition, there have been BCR/ABL-independent mechanisms reported for deriving resistance against imatinib. Our results revealed that besides BCR/ABL overexpression, imatinib resistance also depends on the inhibition of apoptosis as a result of up-regulation of anti-apoptotic stimuli and down-regulation of pro-apoptotic stimuli through MMP but does not depend on any mutation on imatinib binding site of ABL kinase.Article Citation - WoS: 22Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance(Taylor & Francis Ltd, 2013) Camgoz, Aylin; Gencer, Emel Basak; Ural, Ali Ugur; Baran, Yusuf; Baran, YusufMultidrug resistance remains a significant obstacle to successful chemotherapy. The ability to determine the possible resistance mechanisms and surmount the resistance is likely to improve chemotherapy. Nilotinib is a very effective drug in the treatment of imatinib-sensitive or -resistant patients. Although very successful hematologic and cytogenetic responses have been obtained in nilotinib-treated patients, in recent years cases showing resistance to nilotinib have been observed. We aimed to examine the mechanisms underlying nilotinib resistance and to provide new targets for the treatment of chronic myeloid leukemia (CML). There was an up-regulation of antiapoptotic BCR/ABL, GCS and SK-1 genes and MRP1 transporter gene and down-regulation of apoptotic Bax and CerS1 genes in nilotinib-resistant cells. There was no mutation in the nilotinib-binding region of BCR/ABL in resistant cells. Inhibiton of GCS and SK-1 restored nilotinib sensitivity. Targeting the proteins that are involved in nilotinib resistance in addition to the inhibition of BCR/ABL could be a better method of treatment in CML.Review Citation - WoS: 6Citation - Scopus: 5MicroRNAs and Long Non-coding RNAs as Novel Targets in Anti-cancer Drug Development(Bentham Science Publ Ltd, 2023) Cetinkaya, Melisa; Baran, Yusuf; Baran, YusufNon-coding RNAs comprise the majority of RNAs that have been transcribed from the human genome, and these non-coding RNAs have essential regulatory roles in the cellular processes. They have been discovered to influence the expression of the genes, including tumor-suppressive and oncogenes, that establish the non-coding RNAs as novel targets for anti-cancer drug development. Among non-coding RNAs, microRNAs have been extensively studied in terms of cancer biology, and some microRNA-based therapeutics have been reached in clinical studies. Even though most of the research regarding targeting non-coding RNAs for anti-cancer drug development focused on microRNAs, long non-coding RNAs have also started to gain importance as potential therapeutic targets for cancer therapy. In this chapter, the strategies and importance of targeting microRNAs and long non-coding RNAs will be described, along with the clinical studies that involve microRNA-based cancer therapeutics and preclinical studies that involve long non-coding RNA-based therapeutics. Finally, the delivery strategies that have great importance in the effective delivery of the non-coding RNA-based cancer therapeutics, hence the therapy's effectiveness, will be described.Article Citation - WoS: 16Multidrug Resistance Mediated by MRP1 Gene Overexpression in Breast Cancer Patients(Taylor & Francis inc, 2009) Abaan, Ogan Demir; Mutlu, Pelin Kaya; Baran, Yusuf; Atalay, Can; Gunduz, Ufuk; Baran, YusufMultidrug resistance (MDR) is a serious handicap towards the effective treatment of breast cancer patients. One of the most prevalent MDR mechanisms is through the overexpression of genes coding the proteins called Multidrug Resistance-associated Proteins (MRPs). The aim of this study was to investigate the expression of MRP1 in tumor tissues from breast cancer patients. In this study, a semi-quantitative RT-PCR approach was utilized. Our results suggest that MRP1 overexpression can mediate MDR in patients. Pre-evaluation of the level of such MDR mediators before chemotherapy can increase the efficacy of the treatment.Article Citation - WoS: 6Nilotinib Does Not Alter the Secretory Functions of Carotid Artery Endothelial Cells in a Prothrombotic or Antithrombotic Fashion(Sage Publications inc, 2015) Katgi, Abdullah; Sevindik, Omur Gokmen; Gokbulut, Aysun Adan; Ozsan, Guner Hayri; Yuksel, Faize; Solmaz, Serife Medeni; Piskin, OzdenBackground: There have been concerns about the possible prothrombotic effects of nilotinib, especially in patients having cardiovascular risk factors. The potential mechanism behind the increased risk of thromboembolic events is still not clear. Objectives: In this study, we aimed to evaluate possible harmful effects of nilotinib on endothelial cells. To this aim, we examined proliferative capacity and secretory functions of healthy human carotid artery endothelial cells (HCtAECs) in response to nilotinib. Methods: 3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation method was used to determine antiproliferative effects of nilotinib on HCtAECs. The HCtAECs were incubated with 5, 10, and 100 nmol/L doses of nilotinib for 72 hours. Then, in order to assess the endothelial function, levels of nitric oxide (NO), von Willebrand factor (vWF), tissue plasminogen activator, plasminogen activator inhibitor 1 (PAI-1), and endothelin 1 (ET-1) were evaluated using enzyme-linked immunosorbent assay from tissue culture supernatants. Results: There were slight but statistically significant decreases in cell proliferation in response to nilotinib. Nilotinib increased the secretion of t-PA, PAI-1, and vWF in a dose-dependent manner when compared with the untreated control group. The ET-1 secretion was lower in 5 nmol/L and higher in 10 and 100 nmol/L nilotinib-treated cells as compared to untreated cells. Regarding NO secretion, lower levels were observed in 5 and 10 nmol/L, and higher levels were detected in 100 nmol/L nilotinib-treated cells as compared to untreated control group cells. Conclusion: Considering the results obtained in our study, nilotinib does not affect the functions of endothelial cells either in a prothrombotic or an antithrombotic fashion, despite a dose-dependent decline in cell viability.Article Citation - WoS: 7Nilotinib significantly induces apoptosis in imatinib resistant K562 cells with wild-type BCR-ABL, as effectively as in parental sensitive counterparts(Taylor & Francis Ltd, 2010) Ekiz, Huseyin Atakan; Can, Geylani; Gunduz, Ufuk; Baran, Yusuf; Baran, YusufChronic myeloid leukemia (CML) is a hematological malignancy characterized by high levels of immature white blood cells. CML is caused by the translocation between chromosomes 9 and 22 (which results in the formation of the Philadelphia chromosome) creating BCR-ABL fusion protein. Imatinib and nilotinib are chemotherapeutic drugs which specifically bind to the BCR-ABL and inhibit cancer cells. Nilotinib is more effective in this respect than imatinib. We have shown that nilotinib induces apoptosis in imatinib-resistant K562 CML cells which have the wild-type BCR-ABL fusion gene almost to the same extent as it does in the parental sensitive cells by the increase in caspase-3 enzyme activity and the decrease in mitochondrial membrane potential. This effect of nilotinib, even in low concentrations, may indicate the efficacy of the usage of nilotinib in imatinib-resistant CML with less risk of undesired cytotoxic effects in the remaining cells of the body.Review Citation - WoS: 4Citation - Scopus: 4Noncoding RNAs: A New Layer of Functional RNAs(Bentham Science Publ Ltd, 2023) Gurer, Dilek Cansu; Akgul, Bunyamin; Akgül, BünyaminThe conventional central dogma of molecular biology dictates that the genetic information contained within deoxyribonucleic acid (DNA) is passed onto messenger ribonucleic acids (mRNAs), which are then used as templates to synthesize proteins. Although these types of protein-coding genes have been historically prioritized in typical phenotype-genotype studies with a parallel disregard to the rest of the genome, the completion of genome projects has unveiled a surprising layer of genetic information that can play critical roles in cellular processes without coding for proteins. These types of genes are called noncoding genes as they do not code for proteins. Noncoding genes come in different sizes and shapes, and they are just as versatile in carrying out cellular biochemical processes as proteins. In this review, we cover a comprehensive review of housekeeping and regulatory noncoding genes and their mode of action.Article Citation - WoS: 35Citation - Scopus: 41Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study(Elsevier, 2016) Basoglu, Harun; Bilgin, Mehmet Dincer; Demir, Mustafa Muammer; Demir, MustafaBackground: Protoporphyrin IX (PpIX) is a well-known photosensitizer that has great potential for use in photodynamic therapy (PDT). However, aggregation behavior of PpIX in neutral water makes it inappropriate for physiological studies. PpIX-loaded magnetoliposomes (MLs) were fabricated to increase PpIX biocompatibility. PpIX-loaded ML physical properties were characterized, and PpIX-loaded ML drug release behavior was investigated under the influence of an external magnetic field and heat. Toxicity and photodynamic effects of the complex were also examined using in vitro experiments with MCF-7 human breast cancer cells. Methods: The magnetoliposomes were prepared with DPPC, DSPE-PEG2000 lipids and Fe3O4 nanoparticles. The toxicity and in vitro photodynamic effects of the PpIX-loaded MLs at various concentrations were studied using the MCF-7 cell line. Results: The produced PpIX-loaded MLs exhibited an average hydrodynamic diameter of 221 nm; however, TEM measurements indicated that the diameter of the PpIX-loaded MLs varied between 166 and 720 nm. The iron content of the MLs affected cell viability less than the content of the iron free liposomes. Cell viability was reduced to 66% when the concentration of the PpIX-loaded MLs was 350 nM, but when white light was applied for 5 min, all of the cells that were exposed to concentrations of 250 nM and higher PpIX died within 24 h. Conclusion: The results of this study demonstrated the effective application of PpIX-loaded MLs for in vitro photodynamic therapy at nanomolar concentrations. The results also indicated that an LED light source provided sufficient energy to stimulate the PpIX molecules. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 30Quercetin-induced apoptosis involves increased hTERT enzyme activity of leukemic cells(Taylor & Francis Ltd, 2011) Avci, Cigir Biray; Yilmaz, Sunde; Dogan, Zeynep Ozlem; Saydam, Guray; Dodurga, Yavuz; Ekiz, Huseyin Atakan; Gunduz, CumhurWe aimed to examine the growth suppressive effects of quercetin on acute promyelocytic and lymphoblastic leukemia and chronic myeloid leukemia, and to find out whether the growth suppression is related to the blocking of telomerase enzyme activity. Cytotoxic effects of quercetin were shown by trypan blue analyses. Apoptotic effects of quercetin were examined by acridine orange and ethidium bromide staining by fluorescence microscopy. The effects of quercetin on telomerase enzyme activity were shown by hTERT Quantification Kit. Our results demonstrated that quercetin has antiproliferative and apoptotic effects on T-cell acute lymphoblastic leukemia (ALL), acute promyelocytic leukemia, and chronic myeloid leukemia (CML) cells. We also showed for the first time by this study that quercetin suppresses the activity of telomerase in ALL and CML cells. The results of this study show the importance of quercetin for its therapeutic potential in treatment of leukemias.Article Citation - WoS: 53Resveratrol and quercetin-induced apoptosis of human 232B4 chronic lymphocytic leukemia cells by activation of caspase-3 and cell cycle arrest(Taylor & Francis Ltd, 2013) Gokbulut, Aysun Adan; Apohan, Elif; Baran, Yusuf; Baran, YusufChronic lymphocytic leukemia (CLL), defined by accumulation of pathogenic B cells, has a very complex biology due to various factors such as inherited, host, and enviromental factors. Recently, finding new therapeutic agents or development of novel treatment strategies have been paid attention. Resveratrol and quercetin, important phytoalexins found in many plants, have been reported to have cytotoxic effects on various types of cancer. In this study, we examined cytotoxic, cytostatic, and apoptotic effects of these two important phenolic compounds on 232B4 human CLL cells. Cytotoxic effects of resveratrol and quercetin were determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using caspase-3 colorimetric assay. Annexin V-FITC/PI double staining was performed to measure apoptotic cell population. Effects of resveratrol and quercetin on cell cycle profiles of CLL cells were investigated by flow cytometry. Treatment of CLL cells with resveratrol and quercetin caused dose dependent inhibition of cell proliferation and increased apoptotic cell population through induction of caspase-3 activity. Cell cycle analysis displayed cell cycle arrest mainly in G0/G1 for both polyphenols. Our data, in total, showed for the first time that resveratrol and quercetin might block CLL growth through inducing apoptosis and cell cycle arrest.Article Citation - WoS: 35Resveratrol Triggers Apoptosis Through Regulating Ceramide Metabolizing Genes in Human K562 Chronic Myeloid Leukemia Cells(Routledge Journals, Taylor & Francis Ltd, 2011) Kartal, Melis; Saydam, Guray; Sahin, Fahri; Baran, Yusuf; Baran, YusufResveratrol, an important phytoalexin in many plants, has been reported to have cytotoxic effects on various types of cancer. Ceramide is a bioactive sphingolipid that regulates many signaling pathways, including cell growth and proliferation, senescence and quiescence, apoptosis, and cell cycle. Ceramides are generated by longevity assurance genes (LASS). Glucosylceramide synthase (GCS) and sphingosine kinase-1 (SK-1) enzymes can convert ceramides to antiapoptotic molecules, glucosylceramide, and sphingosine-1-phosphate, respectively. C8:ceramide, an important cell-permeable analogue of natural ceramides, increases intracellular ceramide levels significantly, while 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and SK-1 inhibitor increase accumulation of ceramides by inhibiting GCS and SK-1, respectively. Chronic myelogenous leukemia (CML) is a hematological disorder resulting from generation of BCR/ABL oncogene. In this study, we examined the roles of ceramide metabolizing genes in resveratrol-induced apoptosis in K562 CML cells. There were synergistic cytotoxic and apoptotic effects of resveratrol with coadministration of C8:ceramide, PDMP, and SK-1 inhibitor. Interestingly, there were also significant increases in expression levels of LASS genes and decreases in expression levels of GCS and SK-1 in K562 cells in response to resveratrol. Our data, in total, showed for the first time that resveratrol might kill CML cells through increasing intracellular generation and accumulation of apoptotic ceramides.