Akademik Çıktılar
Permanent URI for this communityhttp://65.108.157.135:4000/handle/123456789/4
Browse
Browsing Akademik Çıktılar by WoS Q "Q3"
Now showing 1 - 20 of 34
- Results Per Page
- Sort Options
Article Citation Count: 8An answer to colon cancer treatment by mesenchymal stem cell originated from adipose tissue(Mashhad Univ Med Sciences, 2018) Iplik, Elif Sinem; Ertugrul, Baris; Kozanoglu, Ilknur; Baran, Yusuf; Cakmakoglu, Bedia; Baran, YusufObjective(s): Colon cancer is risen up with its complex mechanism that directly impacts on its treatment as well as its common prevalence. Mesenchymal stem cells (MSCs) have been considered as a therapeutic candidate for conventional disease including cancer. In this research, we have focused on apoptotic effects of adipose tissue-derived MSCs in colon cancer. Materials and Methods: MSCs were obtained from adipose tissue and characterized by Flowcytometer using suitable antibodies. MSCs, HT-29, HCT-116, RKO and healthy cell line MRC5 were cultured by different seeding procedure. After cell viability assay, changes in caspase 3 enzyme activity and the level of phosphatidylserine were measured. Results: For cell viability assay, a 48 hr incubation period was chosen to seed all cells together. There was a 1.36-fold decrease in caspase 3 enzyme activity by co-treatment of RKO and MSCs in addition to 2.02-fold decrease in HT-29 and MSCs co-treatment, and 1.103-fold increase in HCT-116 and MSCs. The results demonstrated that HCT-116 led to the highest rate of apoptotic cell death (7.5%) compared with other cells. Conclusion: We suggest that MSCs might remain a new treatment option for cancer by its differentiation and repair capacity.Review Citation Count: 12Bisphosphonate treatment and radiotherapy in metastatic breast cancer(Humana Press inc, 2008) Ural, A. Ugur; Avcu, Ferit; Baran, Yusuf; Baran, YusufPatients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and high risk of pathologic fractures due to osteolysis. The treatment of breast cancer patients with bone metastases requires a multidisciplinary approach. Radiotherapy is an established treatment for metastatic bone pain. It may be delivered either as a localized low dose treatment for localized bone pain or systemically for more widespread symptoms. Bisphosphonates have been shown to reduce morbidity and bone pain from bone metastases when given to patients with metastatic bone disease. In vivo studies indicate that early bisphosphonates administration in combination with radiotherapy improves remineralization and restabilization of osteolytic bone metastases in animal tumor models. This review focused on a brief discussion about biology of bone metastases, the effects of radiotherapy and bisphosphonate therapy, and possible mechanisms of combination therapy in metastatic breast cancer patients.Review Citation Count: 235Cell Proliferation and Cytotoxicity Assays(Bentham Science Publ Ltd, 2016) Adan, Aysun; Kiraz, Yagmur; Baran, Yusuf; Baran, YusufCell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms in action of certain genes, proteins and pathways involved cell survival or death after exposing to toxic agents. Generally, methods used to determine viability are also common for the detection of cell proliferation. Cell cytotoxicity and proliferation assays are generally used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. Regardless of the type of cell-based assay being used, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be basically classified into different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) raman micro-spectroscopy. In order to choose the optimal viability assay, the cell type, applied culture conditions, and the specific questions being asked should be considered in detail. This particular review aims to provide an overview of common cell proliferation and cytotoxicity assays together with their own advantages and disadvantages, their methodologies, comparisons and intended purposes.Article Citation Count: 0Determination of activation energy for carbon/epoxy prepregs containing carbon nanotubes by differential scanning calorimetry(Sage Publications Ltd, 2023) Uz, Yusuf Can; Tanoglu, Metin; Tanoğlu, MetinThe aim of the present study is the thermal characterization of laboratory-scale carbon fiber/epoxy-based prepregs by incorporating single-wall carbon nanotubes (SWCNTs). Investigation of the cure behavior of a prepreg system is crucial for the characterization and optimization of the fiber reinforced polymeric (FRP) composite. To affect dispersion characteristics, SWCNTs were functionalized by oxidizing their surface with carboxyl (-COOH) group using an acid treatment. The modified resin system contained 0.05, 0.1, and 0.2 wt. % functionalized SWCNTs (F-SWCNTs). Carbon fiber (CF) reinforced prepregs containing various amount of F-SWCNTs were prepared using drum-type winding technique. FTIR was performed to identify new bonding groups formed after the functionalization of SWCNTs. Cure kinetics of prepregs prepared with/without F-SWCNTs were investigated using isoconversional methods.Article Citation Count: 8Development and analysis of composite overwrapped pressure vessels for hydrogen storage(Sage Publications Ltd, 2021) Kartav, Osman; Kangal, Serkan; Yuceturk, Kutay; Tanoglu, Metin; Aktas, Engin; Artem, H. Secil; Tanoğlu, MetinIn this study, composite overwrapped pressure vessels (COPVs) for high-pressure hydrogen storage were designed, modeled by finite element (FE) method, manufactured by filament winding technique and tested for burst pressure. Aluminum 6061-T6 was selected as a metallic liner material. Epoxy impregnated carbon filaments were overwrapped over the liner with a winding angle of +/- 14 degrees to obtain fully overwrapped composite reinforced vessels with non-identical front and back dome layers. The COPVs were loaded with increasing internal pressure up to the burst pressure level. During loading, deformation of the vessels was measured locally with strain gauges. The mechanical performances of COPVs designed with various number of helical, hoop and doily layers were investigated by both experimental and numerical methods. In numerical method, FE analysis containing a simple progressive damage model available in ANSYS software package for the composite section was performed. The results revealed that the FE model provides a good correlation as compared to experimental strain results for the developed COPVs. The burst pressure test results showed that integration of doily layers to the filament winding process resulted with an improvement of the COPVs performance.Article Citation Count: 9Effects of cell-mediated osteoprotegerin gene transfer and mesenchymal stem cell applications on orthodontically induced root resorption of rat teeth(Oxford Univ Press, 2017) Amuk, Nisa Gul; Kurt, Gokmen; Baran, Yusuf; Seyrantepe, Volkan; Yandim, Melis Kartal; Adan, Aysun; Sonmez, Mehmet Fatih; Baran, YusufAim: The aim of this study is to evaluate and compare therapeutic effects of mesenchymal stem cell (MSCs) and osteoprotegerin (OPG) gene transfer applications on inhibition and/or repair of orthodontically induced inflammatory root resorption (OIIRR). Materials and methods: Thirty Wistar rats were divided into four groups as untreated group (negative control), treated with orthodontic appliance group (positive control), MSCs injection group, and OPG transfected MSCs [gene therapy (GT) group]. About 100 g of orthodontic force was applied to upper first molar teeth of rats for 14 days. MSCs and transfected MSC injections were performed at 1st, 6th, and 11th days to the MSC and GT group rats. At the end of experiment, upper first molar teeth were prepared for genetical, scanning electron microscopy (SEM), fluorescent microscopy, and haematoxylin eosin-tartrate resistant acid phosphatase staining histological analyses. Number of total cells, number of osteoclastic cells, number of resorption lacunae, resorption area ratio, SEM resorption ratio, OPG, RANKL, Cox-2 gene expression levels at the periodontal ligament (PDL) were calculated. Paired t-test, Kruskal-Wallis, and chi-square tests were performed. Results: Transferred MSCs showed marked fluorescence in PDL. The results revealed that number of osteoclastic cells, resorption lacunae, resorption area ratio, RANKL, and Cox-2 were reduced after single MSC injections significantly (P < 0.05). GT group showed the lowest number of osteoclastic cells (P < 0.01), number of resorption lacunae, resorption area ratio, and highest OPG expression (P < 0.001). Conclusions: Taken together all these results, MSCs and GT showed marked inhibition and/or repair effects on OIIRR during orthodontic treatment on rats.Article Citation Count: 5Effects of hybrid yarn preparation technique and fiber sizing on the mechanical properties of continuous glass fiber-reinforced polypropylene composites(Sage Publications Ltd, 2016) Merter, N. Emrah; Baser, Gulnur; Tanoglu, Metin; Tanoğlu, MetinIn this study, hybrid yarns were developed by commingling the continuous polypropylene and glass fibers using air jet and direct twist preparation techniques. The non-crimp fabrics were obtained with +/- 45 degrees fiber orientation from these hybrid yarns. The fabrics were prepared with fiber sizings that are compatible and incompatible with polypropylene matrix to investigate the effect of interfacial adhesion on the properties of the thermoplastic composites. Composite panels were produced from the developed fabrics by hot press compression method and microstructural and mechanical properties of the composites were investigated. It was found that type of the hybrid yarn preparation technique and glass fiber sizing applied on the glass fibers have some important role on the properties of the composites. Composites made of fabrics produced by air jet hybrid yarn preparation technique exhibited better results than those produced by direct twist covering (single or double) hybrid yarn preparation techniques. The highest flexural properties (99.1MPa flexural strength and 9.55 GPa flexural modulus) were obtained from the composites manufactured from fabric containing compatible sizing, due to better adhesion at the interface of glass fibers and polypropylene matrix. The composite fabricated from fabric with polypropylene compatible sizing also exhibited the highest peel resistance (interlaminar peel strength value of 5.87N/mm). On the other hand, it was found that hybrid yarn preparation technique and type of the glass fiber sizing have insignificant effect on the impact properties of the glass fiber/polypropylene composites.Article Citation Count: 0Effects of nanosecond laser ablation parameters on surface modification of carbon fiber reinforced polymer composites(Sage Publications Ltd, 2023) Iplikci, Hande; Barisik, Murat; Turkdogan, Ceren; Martin, Seckin; Yeke, Melisa; Nuhoglu, Kaan; Iris, Mehmet ErdemRemoval of contaminants and top polymer layer from the surface of carbon -fiber-reinforced polymer (CFRP) composites is critical for high-quality adhesive-joining with direct bonding to the reinforcing fiber constituents. Surface treatment with a laser beam provides selective removal of the polymer matrix without damaging the fibers and increasing the wettability. However, inhomogeneous thermal properties of CFRP make control of laser ablation difficult as the laser energy absorbed by the carbon fibers is converted into heat and transmitted through the fiber structures during the laser operation. In this study, the effect of scanning speed and laser power on nanosecond laser surface treatment was characterized by scanning electron microscope images and wetting angle measurements. Low scanning speeds allowed laser energy to be conducted as thermal energy through the fibers, which resulted in less epoxy matrix removal and substantial thermal damage. Low laser power partially degraded the epoxy the surface while the high power damaged the carbon fibers. For the studied CFRP specimens consisting of unidirectional [45/0/-45/90](2s) stacking of carbon/epoxy prepregs (HexPly (R) -M91), 100 mJ/mm(2) generated by 10 m/s scanning speed and 30 W power appeared as optimum processing parameters for the complete removal of epoxy matrix from the top surface with mostly undamaged carbon fibers and super hydrophilic surface condition.Article Citation Count: 1Electrospinning of Fatty Acid-Based and Metal Incorporated Polymers for the Fabrication of Eco-Friendly Fibers(Wiley-v C H verlag Gmbh, 2022) Erdem, Caglar; Isik, Tugba; Horzum, Nesrin; Hazer, Baki; Demir, Mustafa M.; Demir, MustafaAccumulation of plastic wastes occupies large space in gyres of the oceans called the 7(th) continent. This high-level concentration of toxic plastic wastes causes harmful consequences for marine life, therefore petroleum-originated plastics must be replaced (or at least partially) with natural resources. The environmental trends in material preparation promote the utilization of greener methods and materials when the limited primary sources are considered. Starting from the fatty acid macroperoxide initiators, synthesis of bio-based polymers using less commercial chemicals and stepwise green synthesis schemes could be possible in the near future. In this research, autoxidized vegetable oil initiators (castor, limonene, and soybean oil) containing metal nanoparticles (silver, platinum, and gold) are employed for free radical polymerization of vinyl monomers. The metal loaded and vegetable oil-based polymers are processed by electrospinning and end up with the successful fabrication of continuous fibers. Ag-loaded ricinoleic acid based polymers show notable antibacterial activity against Escherichia coli. This approach offers a remarkable minimization of the initiator consumption in the synthesis of such synthetic macromolecules as well as nanoparticle containing polymer composites while still maintaining the ease of processing. Transforming the obtained graft copolymers to electrospun nanofibers facilitates the use as support materials for antibacterial surfaces.Article Citation Count: 0Enhancement of filament wound glass fiber/epoxy-based cylindrical composites by toughening with single-walled carbon nanotubes(Sage Publications Ltd, 2022) Solak, Zeynep Ay; Kartav, Osman; Tanoglu, Metin; Tanoğlu, MetinIn this study, the effect of incorporating nano-sized fillers (noncovalently functionalized with ethoxylated alcohol chemical-vapor-deposition-grown SWCNTs) within an epoxy resin on the performance of filament wound glass fiber (GF)-based cylindrical composites (GFCCs) was investigated. For this purpose, SWCNTs were dispersed with the concentration of 0.05 and 0.1 weight percent (wt.%) within an epoxy resin using mechanical stirring and calendaring (3-roll-milling) techniques. The rheological behavior of the SWCNT incorporated epoxy mixture was characterized to determine the suitability of blends for the filament winding process. It was revealed that the viscosity value of the resin was not significantly affected by the addition of SWCNTs in given concentrations. Moreover, contact angle measurements were also performed on the SWCNT/epoxy blends dropped on the GF for the evaluation of the wettability behavior of the GF in the presence of the SWCNTs in relevant concentrations. Eventually, it was observed that the wettability behavior of GF was not reasonably affected by the presence of the SWCNTs. The double cantilever beam (DCB), flexural, and short beam shear (SBS) tests were performed on the reference and SWCNT-modified GFCC specimens to evaluate the effects of the SWCNT presence on the interlaminar fracture toughness and out-of-plane properties of GFCCs. The fractured surfaces after the DCB and SBS tests were analyzed under the scanning electron microscopy to reveal the toughening mechanisms and the filler morphologies. Consequently, although SWCNT incorporation was on the outermost layer of GFCCs, it was found that the interlaminar shear strength (ILSS) values and Mode I interlaminar fracture toughness values of the curved composite samples were improved up to 22 and 216%, respectively, due to the presence of the SWCNTs.Article Citation Count: 4Estimating software robustness in relation to input validation vulnerabilities using Bayesian networks(Springer, 2018) Ufuktepe, Ekincan; Tuglular, Tugkan; Tuğlular, Tuğkan; Bilgisayar Mühendisliği BölümüEstimating the robustness of software in the presence of invalid inputs has long been a challenging task owing to the fact that developers usually fail to take the necessary action to validate inputs during the design and implementation of software. We propose a method for estimating the robustness of software in relation to input validation vulnerabilities using Bayesian networks. The proposed method runs on all program functions and/or methods. It calculates a robustness value using information on the existence of input validation code in the functions and utilizing common weakness scores of known input validation vulnerabilities. In the case study, ten well-known software libraries implemented in the JavaScript language, which are chosen because of their increasing popularity among software developers, are evaluated. Using our method, software development teams can track changes made to software to deal with invalid inputs.Article Citation Count: 13Experimental and statistical analysis of carbon fiber/epoxy composites interleaved with nylon 6,6 nonwoven fabric interlayers(Sage Publications Ltd, 2020) Beylergil, Bertan; Tanoglu, Metin; Aktas, Engin; Tanoğlu, MetinThermoplastic interleaving is a promising technique to improve delamination resistance of laminated composites. In this study, plain-weave carbon fiber/epoxy composites were interleaved with nylon 6,6 nonwoven fabrics with an areal weight density of 17 gsm. The carbon fiber/epoxy composite laminates with/without nylon 6,6 nonwoven fabric interlayers were manufactured by VARTM technique. Double cantilever beam fracture toughness tests were carried out on the prepared composite test specimens in accordance with ASTM 5528 standard. The experimental test data were statistically analyzed by two-parameter Weibull distribution. The results showed that the initiation and propagation fracture toughness Mode-I fracture toughness of carbon fiber/epoxy composites could be improved by about 34 and 156% (corresponding to a reliability level of 0.50) with the incorporation of nylon 6,6 interlayers in the interlaminar region, respectively. The results also revealed that the percent increase in the propagation fracture toughness value was 67 and 41% at reliability levels of 0.90 and 0.95, respectively.Article Citation Count: 0Fatigue life prediction and optimization of GFRP composites based on Failure Tensor Polynomial in Fatigue model with exponential fitting approach(Sage Publications Ltd, 2022) Gunes, Mehmet D.; Imamoglu Karabas, Neslisah; Deveci, Hamza A.; Tanoglu, Gamze; Tanoglu, Metin; Tanoğlu, MetinIn this study, a new fatigue life prediction and optimization strategy utilizing the Failure Tensor Polynomial in Fatigue (FTPF) model with exponential fitting and numerical bisection method for fiber reinforced polymer composites has been proposed. Within the experimental stage, glass/epoxy composite laminates with [O](6), [+/- 45](3), and [90](6) lay-up configurations were fabricated, quasi-static and fatigue mechanical behavior of GFRP composites was characterized to be used in the FTPF model. The prediction capability of the FTPF model was tested based on the experimental data obtained for multidirectional laminates of various composite materials. Fatigue life prediction results of the glass/epoxy laminates were found to be better as compared to those for the linear fitting predictions. The results also indicated that the approach with exponential fitting provides better fatigue life predictions as compared to those obtained by linear fitting, especially for glass/epoxy laminates. Moreover, an optimization study using the proposed methodology for fatigue life advancement of the glass/epoxy laminates was performed by a powerful hybrid algorithm, PSA/GPSA. So, two optimization scenarios including various loading configurations were considered. The optimization results exhibited that the optimized stacking sequences having maximized fatigue life can be obtained in various loading cases. It was also revealed that the tension-compression loading and the loadings involving shear loads are critical for fatigue, and further improvement in fatigue life may be achieved by designing only symmetric lay-ups instead of symmetric-balanced and diversification of fiber angles to be used in the optimization.Article Citation Count: 10Gossypol Interferes with Both Type I and Type II Topoisomerase Activities Without Generating Strand Breaks(Humana Press inc, 2013) Senarisoy, Muge; Canturk, Pakize; Zencir, Sevil; Baran, Yusuf; Topcu, Zeki; Baran, YusufA considerable number of agents with chemotherapeutic potentials reported over the past years were shown to interfere with the reactions of DNA topoisomerases, the essential enzymes that regulate conformational changes in DNA topology. Gossypol, a naturally occurring bioactive phytochemical is a chemopreventive agent against various types of cancer cell growth with a reported activity on mammalian topoisomerase II. The compounds targeting topoisomerases vary in their mode of action; class I compounds act by stabilizing covalent topoisomerase-DNA complexes resulting in DNA strand breaks while class II compounds interfere with the catalytic function of topoisomerases without generating strand breaks. In this study, we report Gossypol as the interfering agent with type I topoisomerases as well. We also carried out an extensive set of assays to analyze the type of interference manifested by Gossypol on DNA topoisomerases. Our results strongly suggest that Gossypol is a potential class II inhibitor as it blocked DNA topoisomerase reactions with no consequently formed strand breaks.Article Citation Count: 3Improving adhesive behavior of fiber reinforced composites by incorporating electrospun Polyamide-6,6 nanofibers in joining region(Sage Publications Ltd, 2022) Esenoglu, Gozde; Barisik, Murat; Tanoglu, Metin; Yeke, Melisa; Turkdogan, Ceren; Iplikci, Hande; Iris, Mehmet Erdem; Tanoğlu, MetinAdhesive joining of fiber reinforced polymer (CFRP) composite components is demanded in various industrial applications. However, the joining locations frequently suffer from adhesive bond failure between adhesive and adherent. The aim of the present study is improving bonding behavior of adhesive joints by electrospun nanofiber coatings on the prepreg surfaces that have been used for composite manufacturing. Secondary bonding of woven and unidirectional CFRP parts was selected since this configuration is preferred commonly in aerospace practices. The optimum nanofiber coating with a low average fiber diameter and areal weight density is succeed by studying various solution concentrations and spinning durations of the polyamide-6.6 (PA 66) electrospinning. We obtained homogeneous and beadles nanofiber productions. As a result, an average diameter of 36.50 +/- 12 nm electrospun nanofibers were obtained and coated onto the prepreg surfaces. Prepreg systems with/without PA 66 nanofibers were hot pressed to fabricate the CFRP composite laminates. The single-lap shear test coupons were prepared from the fabricated laminates to examine the effects of PA 66 nanofibers on the mechanical properties of the joint region of the composites. The single-lap shear test results showed that the bonding strength is improved by about 40% with minimal adhesive use due to the presence of the electrospun nanofibers within the joint region. The optical and SEM images of fractured surfaces showed that nanofiber-coated joints exhibited a coherent failure while the bare surfaces underwent adhesive failure. The PA66 nanofibers created better coupling between the adhesive and the composite surface by increasing the surface area and roughness. As a result, electrospun nanofibers turned adhesive failure into cohesive and enhanced the adhesion performance composite joints substantially.Article Citation Count: 0Investigating the potential therapeutic role of targeting STAT3 for overcoming drug resistance by regulating energy metabolism in chronic myeloid leukemia cells(Mashhad Univ Med Sciences, 2022) Kaymaz, Burcin Tezcanli; Gunel, Nur Selvi; Sogutlu, Fatma; Ay, Neslihan Pinar Ozates; Baran, Yusuf; Gunduz, Cumhur; Avci, Cigir Biray; Baran, YusufObjective(s): STATs are one of the initial targets of emerging anti-cancer agents due to their regulatory roles in survival, apoptosis, drug response, and cellular metabolism in CML. Aberrant STAT3 activity promotes malignancy, and acts as a metabolic switcher in cancer cell metabolism, contributing to resistance to TKI nilotinib. To investigate the possible therapeutic effects of targeting STAT3 to overcome nilotinib resistance by evaluating various cellular responses in both sensitive and nilotinib resistant CML cells and to test the hypothesis that energy metabolism modulation could be a mechanism for re-sensitization to nilotinib in resistant cells. Materials and Methods: By using RNAi-mediated STAT3 gene silencing, cell viability and proliferation assays, apoptotic analysis, expressional regulations of STAT mRNA transcripts, STAT3 total, pTyr705, pSer727 protein expression levels, and metabolic activity as energy metabolism was determined in CML model K562 cells, in vitro. Results: Targeting STAT3 sensitized both parental and especially nilotinib resistant cells by decreasing leukemic cell survival; inducing leukemic cell apoptosis, and decreasing STAT3 mRNA and protein expression levels. Besides, cell energy phenotype was modulated by switching energy metabolism from aerobic glycolysis to mitochondrial respiration in resistant cells. RNAi-mediated STAT3 silencing accelerated the sensitization of leukemia cells to nilotinib treatment, and STAT3-dependent energy metabolism regulation could be another underlying mechanism for regaining nilotinib response. Conclusion: Targeting STAT3 is an efficient strategy for improving the development of novel CML therapeutics for regaining nilotinib response, and re-sensitization of resistant cells could be mediated by induced apoptosis and regulation in energy metabolism.Article Citation Count: 1Investigation of hybridization effect on ballistic performance of multi-layered fiber reinforced composite structures(Sage Publications Ltd, 2022) Ustun, Hikmet Sinan; Toksoy, Ahmet Kaan; Tanoglu, Metin; Tanoğlu, MetinThe aim of this study is enhancing the ballistic performance of multi-layered fiber reinforced composite structures by hybridization approach against fragment simulating projectile (FSP). For manufacturing of homogeneous and hybrid composite structures, 170 g/m(2) twill weave aramid and 280 g/m(2) plain weave E-Glass fibers were used with epoxy resin systems and two different thickness values for each composite panel were fabricated and tested to obtain a relationship between areal density and V-50 parameters. Tensile, 3-point bending, and short beam strength tests of composite panels were performed, and ballistic performance of composite structures were measured by V-50 test method with 1.1 g FSP threat. Ballistic performance of hybrid composite structures was compared with high-performance composite ballistic panel test results reported in literature. As a result, it was found that E-Glass fabric layers together with aramid fabrics increased the energy absorbing capability of hybrid composite panels and ballistic performance was enhanced to be similar or higher than ballistic fiber reinforced composites. Hence, hybridization was found to be an effective way to enhance ballistic performance of fiber reinforced composite structures.Article Citation Count: 16Investigation of interlayer hybridization effect on burst pressure performance of composite overwrapped pressure vessels with load-sharing metallic liner(Sage Publications Ltd, 2020) Kangal, Serkan; Kartav, Osman; Tanoglu, Metin; Aktas, Engin; Artem, H. Secil; Tanoğlu, MetinIn this study, multi-layered composite overwrapped pressure vessels for high-pressure gaseous storage were designed, modeled by finite element method and manufactured by filament winding technique. 34CrMo4 steel was selected as a load-sharing metallic liner. Glass and carbon filaments were overwrapped on the liner with a winding angle of [+/- 11 degrees/90 degrees(2)](3) to obtain fully overwrapped composite reinforced vessel with non-identical front and back dome endings. The vessels were loaded with increasing internal pressure up to the burst pressure level. The mechanical performances of pressure vessels, (i) fully overwrapped with glass fibers and (ii) with additional two carbon hoop layers on the cylindrical section, were investigated by both experimental and numerical approaches. In numerical approaches, finite element analysis was performed featuring a simple progressive damage model available in ANSYS software package for the composite section. The metal liner was modeled as elastic-plastic material. The results reveal that the finite element model provides a good correlation between experimental and numerical strain results for the vessels, together with the indication of the positive effect on radial deformation of the COPVs due to the composite interlayer hybridization. The constructed model was also able to predict experimental burst pressures within a range of 8%. However, the experimental and finite element analysis results showed that hybridization of hoop layers did not have any significant impact on the burst pressure performance of the vessels. This finding was attributed to the change of load-sharing capacity of composite layers due to the stiffness difference of carbon and glass fibers.Item Citation Count: 16Investigation of interlayer hybridization effect on burst pressure performance of composite overwrapped pressure vessels with load-sharing metallic liner(Sage Publications Ltd, 2020) Kangal, Serkan; Kartav, Osman; Tanoglu, Metin; Aktas, Engin; Artem, H. Secil; Tanoğlu, MetinIn this study, multi-layered composite overwrapped pressure vessels for high-pressure gaseous storage were designed, modeled by finite element method and manufactured by filament winding technique. 34CrMo4 steel was selected as a load-sharing metallic liner. Glass and carbon filaments were overwrapped on the liner with a winding angle of [+/- 11 degrees/90 degrees(2)](3) to obtain fully overwrapped composite reinforced vessel with non-identical front and back dome endings. The vessels were loaded with increasing internal pressure up to the burst pressure level. The mechanical performances of pressure vessels, (i) fully overwrapped with glass fibers and (ii) with additional two carbon hoop layers on the cylindrical section, were investigated by both experimental and numerical approaches. In numerical approaches, finite element analysis was performed featuring a simple progressive damage model available in ANSYS software package for the composite section. The metal liner was modeled as elastic-plastic material. The results reveal that the finite element model provides a good correlation between experimental and numerical strain results for the vessels, together with the indication of the positive effect on radial deformation of the COPVs due to the composite interlayer hybridization. The constructed model was also able to predict experimental burst pressures within a range of 8%. However, the experimental and finite element analysis results showed that hybridization of hoop layers did not have any significant impact on the burst pressure performance of the vessels. This finding was attributed to the change of load-sharing capacity of composite layers due to the stiffness difference of carbon and glass fibers.Review Citation Count: 5Long Noncoding RNAs in Human Cancer and Apoptosis(Bentham Science Publ Ltd, 2023) Erdogan, Ipek; Sweef, Osama; Akgul, Bunyamin; Akgül, BünyaminGenome annotations have uncovered the production of at least one transcript from nearly all loci in the genome at some given time throughout the development. Surprisingly, many of these transcripts do not code for proteins and are relatively long in size, thus called long noncoding RNAs (lncRNAs). Next- and third-generation sequencing technologies have amassed numerous lncRNAs expressed under different phenotypic conditions, yet many remain to be functionally characterized. LncRNAs regulate gene expression by functioning as scaffold, decoy, signaling, and guide molecules both at the transcriptional and post-transcriptional levels, interacting with different types of macromolecules, such as proteins, DNA, and RNA. Here, we review the potential regulatory role of lncRNAs in apoptosis and cancer as some of these lncRNAs may have the diagnostic and therapeutic potential in cancer.